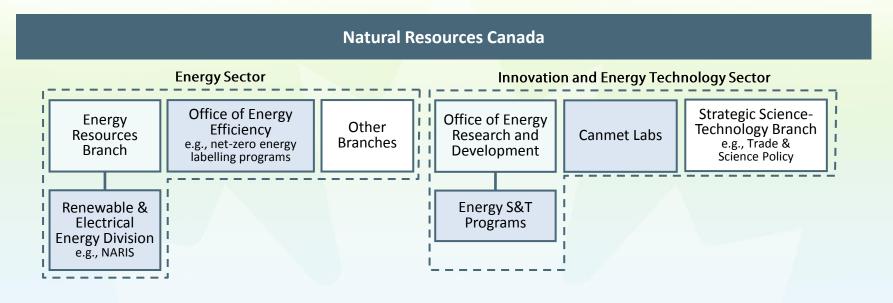


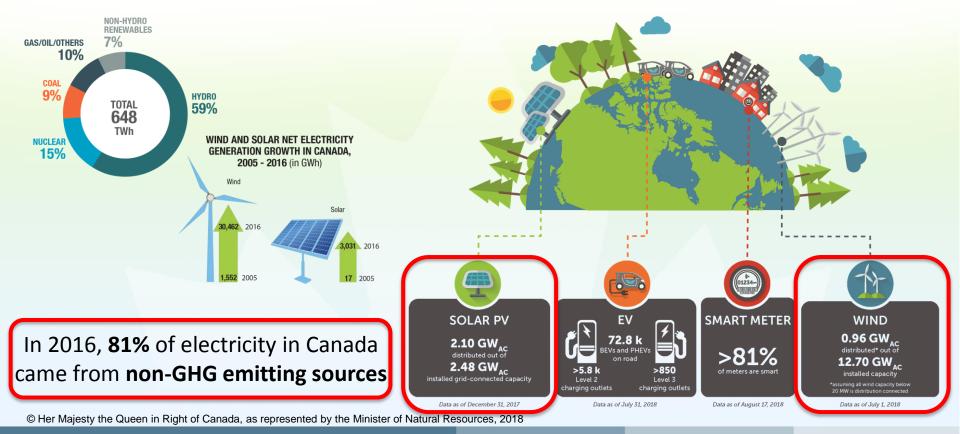
Wind-dominated System where Thermal Storage has been a Key Enabling Technology


Alexandre Prieur, Director Renewable Energy Integration

2018 International conference on Integration of Renewable and Distributed Energy Resources(IRED) Vienna, Austria

Federal Government and the Smart Grid

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018


Canmet Laboratories Across Canada

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

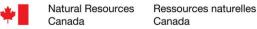
Smart Grid Deployment Metrics in Canada 2018

Decarbonization and Electrification

Residential energy use

WATER HEATING

289 19%


81% of residential energy consumption is used for space and water heating

OTHER* RESIDENTIAL APPLIANCES ENERGY USE (PJ), 2015 BIOMASS 6% SPACE COOLING **ELECTRICITY** LIGHTING 32 **OTHER OIL PRODUCTS** 20% 8% 58 TOTAL 4% OIL **SPACE HEATING** 9,013 15% 964 PJ **APPLIANCES** TOTAL 62% 201 1,544 NATURAL GAS 13% 31% **P**J **MOTOR GASOLINE** 17%

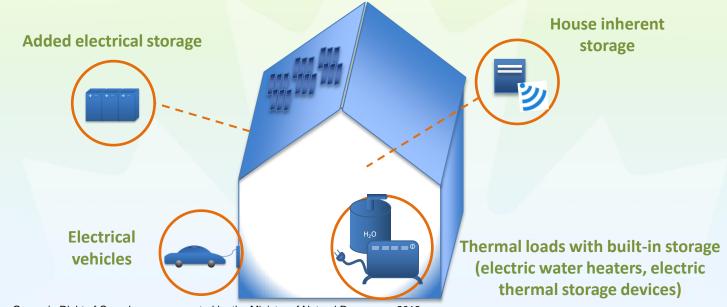
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

CANADA'S SECONDARY ENERGY USE BY FUEL

TYPE, 2015

Summerside Electric Case Study

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018


Canada

Natural Resources **Ressources naturelles** Canada

6

Flexible Loads = Integrate Renewable Residential Sector Example

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Natural Resources Ressources naturelles Canada Canada

Canada's DR potential

Total residential DR potential in Canada is 39 GW/85 GWh

		BC	AB	SK	MB	ON	QC	NB	NS	PE	NL	Total
ting	Peak Load (GW)	3.6	0.58	0.25	1.2	6.1	13	1.1	0.68	0.02	0.93	27
Space Heating	Thermal Storage Capacity (GWh)	7.2	1.2	4.9	2.4	12	25	2.2	1.4	0.05	1.9	58
Space Cooling	No. Homes with Central AC (k)	198	221	194	271	3110	524	52	18.0	0.5	4.8	4593
iting	Peak Load (GW)	0.73	0.12	0.08	0.27	1.3	3.6	3.3	2.3	0.01	0.23	12
Water Heating	Thermal Storage Capacity (GWh)	2.8	0.46	0.30	1.0	5.2	14	1.3	0.91	0.05	0.88	27

- With minimal/no comfort impact - Without storage addition

Steven Wong, Canadian Residential Demand Response and Ancillary Service Market Opportunities, CanmetENERGY, Varennes Research Centre, Natural Resources Canada, Report No. 2015-022 (RP-TEC), April 2015

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Summerside Smart Grid Project for Wind Integration

Summerside, Prince Edward Island

- 15,000 inhabitants
- 27 MW peak
- 130 GWh annual energy consumption

Electric utility

- Municipally-owned
- 21 MW wind generation (owned/contracted) (supplies 40-50% energy)
- Interconnected with New Brunswick Power

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

immerside

 Prince Edward Island
S. Wong, G. Gaudet and L. P. Proulx, "Capturing Wind with Thermal Energy Storage – Summerside's Smart Grid Approach," in *IEEE Power and Energy Technology Systems Journal*, In Press. doi: 10.1109/JPETS.2017.2754139

9

Wind Integration Challenge

- Mismatch between wind and load means that energy must often be exported to bulk grid
- Consequences:
 - Lost GHG reduction potential with clean energy not being used locally
 - Missed economic gains by exporting the wind energy at less than value

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Solution

Solution:

A *smart grid* program increasing local utilization of wind generation

Since wind cannot be controlled (without losing energy), solution must be on the load side

Approach:

- Increase electric heat load
- Enable flexibility in heat load through utility managed heat energy storage
- Use wind energy to heat or to charge energy storage appliances for space/water heating

High temperature electric water heater with thermostatic valve

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Program

Consumer-side Program:

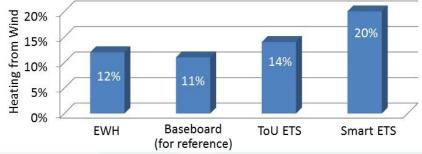
- Encourage replacement of oil-fired • equipment with
 - _ Electric thermal storage (ETS) space heating units
 - High capacity/temperature electric water heaters

by offering discounted rates

- Offsetting customer-borne capital costs
- Bucket at 8¢ vs 12¢ per kWh for appliance energy demand
- Appliance load management options ٠
 - Smart (dynamically)
 - Time-of-use

	l otal dev	lice uptake, to					
Device	No.	Total Charging Capacity (kW)	Total Storage Capacity (kWh)	Estimated Energy Use (MWh)			
Room ETS	120	642	3240	1436			
House ETS	45	1244	6618	2153			
Thermal Electric Large ETS	6	480	2280	2997			
Water Heater	140	630	849	n/a			
	al of 3 MW and 13.5 MWh available storage						

Total dovice untake to 2015


© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Results

Additional 621 MWh (24% of • surplus) of wind locally consumed

Portion of energy use supplied by wind, per device

400 t CO₂eq GHG avoidance •

ToU ETS (small home)	Smart ETS (small home)	ToU EWH		
2.4 t CO ₂ eq/y/appliance	2.9 t CO ₂ eq/y/appliance	0.3 t CO ₂ eq/y/appliance		

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Conclusion

- Decarbonization, electrification, clean electricity •
- Flexibility from the demand side = enabler for renewables •
- Smart grid technologies deployed in Summerside to use wind • surpluses for clean heating
- Now studying future control options using AI techniques to • improve prediction and control

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Questions

Alexandre Prieur, P.Eng., M.A.Sc.

Director **Renewable Energy Integration Program** Natural Resources Canada alexandre.prieur@canada.ca

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Canada

Natural Resources **Ressources naturelles** Canada

